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Path-dependent Lagrangians in relativistic electrodynamics 
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Applied Mathematicst, School of General Studies, The Australian National University, PO 
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Received 10 October 1979 

Abstract. The interaction of an electromagnetic field and a set of point charges is governed 
by the Maxwell-Lorentz and Minkowski equations. These relate variables-the elec- 
tromagnetic field tensor and the charge-current density vector-that have a direct physical 
significance and are uniquely defined (once a convention for their behaviour under 
improper Lorentz transformations has been adopted). The Lagrangian formalism, 
however, requires the interaction to be expressed in terms of one variable that is uniquely 
defined together with one that is capable of being altered by a gauge transformation. It is 
demonstrated here in an explicitly Lorentz covariant manner that there exists a class of 
path-dependent Lagrangians with the property that the so-called ‘minimal-coupling’ and 
‘multipolar’ interactions are equal. In such Lagrangians, whether the path dependence 
(which is a manifestation of non-uniqueness or gauge dependence) is to be carried by the 
electromagnetic potential or by the polarisation-magnetisation tensor of the system of 
particles is entirely a question of convenience. In the analysis given, the integration paths 
for the potential need not lie in flat hypersurfaces, and those for the polarisation- 
magnetisation tensor need not move with timelike velocities, as was assumed in a previous 
non-relativistic treatment of the subject. 

1. Introduction 

In the classical formulation of the electrodynamics of point charges, the interaction of 
field and particles is commonly introduced through the ‘minimal-coupling’ interaction 
Lagrangian, in which an electromagnetic potential is linked to the charge-current 
density vector. The dependence of the Lagrangian on the potential, which is susceptible 
to gauge transformation, can be changed into a dependence on integration paths, which 
are susceptible to deformation. For De Witt (1962) has shown (see also Mandelstam 
1962, Belinfante 1962) that there is a class of potentials expressible as integrals of the 
electromagnetic field tensor along spacelike paths coming from infinity and ending at 
the field points. The coupling between the two parts of the system can alternatively be 
described by means of the ‘multipolar’ interaction Lagrangian, in which the elec- 
tromagnetic field strengths are linked to a polarisation-magnetisation tensor and only 
the ‘true’ charge-current density to a potential. The true charges and currents 
represent the effect of the total charge when supposed coincident with an arbitrarily 
moving reference point. The multipolar Lagrangian is independent of the potential if 
the aggregate of particles is overall electrically neutral or if the reference point is always 
confined to a region (e.g. at spatial infinity) in which the potential vanishes. There still 
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remains, however, the dependence of the Lagrangian on the polarisation-magnetisa- 
tion tensor, as this too can be subjected to ‘gauge’ transformations, analogous to those 
of the potential. Since there exists a class of polarisation-magnetisation tensors defined 
as integrals along spacelike paths extending from the reference point to the charged 
particles (Healy 1978) or as integrals over the surfaces generated by the motion of these 
paths (Fiutak and Zukowski 1978), it is possible to express the multipolar Lagrangian 
also in an explicitly path-dependent form. 

In this paper we show that the integration paths for the polarisation-magnetisation 
tensor are dynamically determined by the integration paths for the potential and by the 
motion of the charged particles. For this purpose it is necessary to modify De Witt’s 
potential by making the integration paths start at a reference point that is not 
necessarily at infinity. The path-dependent minimal-coupling and multipolar Lagran- 
gians then become identical. Moreover, gauge transformations of the potential caused 
by altering the integration paths induce similar ‘gauge’ transformations of the polarisa- 
tion-magnetisation tensor. A non-relativistic treatment of this problem has been given 
before (see Healy 1979, where also references to previous work may be found). The 
present treatment is more general in that: 

(i) the formalism is manifestly Lorentz covariant; 
(ii) the integration paths for the potential are not confined to spacelike hyperplanes 

(e.g. surfaces of constant time), but can be embedded in curved spacelike hypersurfaces; 
(iii) the integration paths for the polarisation-magnetisation tensor need not move 

with timelike velocities. 

2. The charge-current density four-vector 

Let the whole of the four-dimensional Minkowski space be filled with a family of 
distinct infinite simply-connected spacelike hypersurfaces U (  r ) ,  r being a real invariant 
parameter in the domain -CO to CO. There is a unique surface passing through, and thus 
a unique r associated with, any given point x. The directed surface element d g  is a 
pseudovector and will be assumed to point in the direction of increasing T in a proper 
(i.e. right-handed orthochronous or left-handed non-orthochronous) Lorentz frame, 
and in the direction of decreasing T in an improper Lorentz frame. It is convenient to 
take the four-dimensional volume element d4x and the four-dimensional delta function 
S4(x) to be pseudoscalars. We then have 

If the metric tensor is chosen to have signature -2, then d4x is positive in a proper frame 
and negative in an improper frame. 

The charged particles will be labelled by a (which is not to be summed over, unless 
there is an explicit indication to the contrary). Thus particle a has charge e,, rest mass 
m, and world line 1,. As this last is traced out in the positive sense, the time coordinate 
either strictly increases from -00 to CO (orthochronous frame) or strictly decreases from 
00 to -00 (non-orthochronous frame). This holds in all frames if only it holds in one, as 
follows from the timelike character of la, which represents the trajectory of a particle 
with non-zero rest mass. The charge-current density four-vector is defined by 
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where c is the speed of light in vacuo. The continuity or charge conservation equation is 
an immediate consequence of this definition. Since the four-dimensional delta function 
is a pseudoscalar, j behaves as a pseudovector, and this behaviour determines the 
transformation properties of the other field quantities. Thus the electromagnetic field 
tensor b is a pseudotensor and its dual b* is a true tensor. 

A point on 1, will be denoted by x,. Because 1, is everywhere timelike, there is a 
unique point x, on every hypersurface U, and thus r can be used as a parameter for la, 
i.e. x, is a function of r. It will be supposed that r increases as 1, is traversed in its 
positive sense. 

3. Lagrangian and gauge transformations 

We take as a Lagrangian for the complete system the sum Z of the free Lagrangian Zo 
given by 

and the interaction Lagrangian Zint given by 

In equation (3) the dot denotes differentiation with respect to r, and the negative 
(positive) square root is to be used in a proper (improper) frame. The Lagrangian is thus 
a pseudoscalar. If arbitrary variations of the four-potential a are allowed, then 
Hamilton’s principle applied to Z leads to the Maxwell-Lorentz equations with 
sources. Similarly, if arbitrary variations of the particle coordinates x, are allowed, 
Hamilton’s principle gives the Minkowski equations of motion with the Lorentz 
four-force. For our purposes, however, it will be necessary to restrict the variations 
Sx,(r) to be along the hypersurface u(r) .  It is shown in the Appendix that, even with 
this constraint, Hamilton’s principle still yields the Minkowski equations. 

Although Z0 is gauge invariant, Zint is not. Under a gauge transformation with 
gauge function x, Zint is changed according to 

where the second line follows from application of the four-dimensional divergence 
theorem (with the region of integration being bounded by the hypersurfaces C ( T )  and 
u(r  +dr ) )  and from the continuity equation, which holds as well for the varied as for the 
natural motion of the system. Now pint depends on the new potential a‘ in exactly the 
same way that 2int depended on the old potential a. Hence, if arbitrary variations of x, 
and thus of a‘, are allowed, the new Lagrangian 2 must lead to the Maxwell-Lorentz 
and Minkowski equations (which are gauge invariant), just as did the old Lagrangian 2, 
However, x may have a functional dependence on the dynamical variables that restricts 
its variations. (This will be true of the path-dependent gauge function to be discussed in 
the next section.) We may nevertheless show that, if x(x) depends on the old potential 
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and particle coordinates only through their values on the same hypersurface a on which 
x lies, then 9 and 9 are equivalent, i.e. they yield equivalent equations of motion for 
the system. We continue to use a and the x ,  as the Lagrangian coordinates and regard a‘ 
as a prescribed functional or function of these. The old and new action integrals are 
related by 

2 = d - [ xj” da”] ‘* 
C 71 

If all variations vanish on u ( T ~ )  and u ( T ~ ) ,  then S x  vanishes there too, by hypothesis. 
Moreover, Si” da, also vanishes on ( ~ ( 7 ~ )  and U ( T &  provide3 again that Sx, (Tl )  = 0 = 
Sx, ( 7 2 ) .  This follows from the functional dependence of j on the x ,  and i, and from the 
assumption (which is now seen to be crucial) that the variations Sx, are always along U. 
Thus the variations of the action integrals 2 and d are identical and the equations of 
motion associated with them are equivalent. This is because the Euler-Lagrange 
equations are both the necessary and sufficient conditions for Hamilton’s principle to 
hold. 

4. Path-dependent four-potential 

The reference point from which the integratioqpaths are to start will be denoted by X 
and supposed to trace out a smooth world line L. As X may have a purely geometrical 
significance, L need not be everywhere timelike. It will be assumed, however, that 
there is a unique point X on each hypersurface a, so that T can be used as a parameter 
for L. The positive sense of L is then taken to be that of increasing 7. For each point x in 
a ( ~ )  we choose a curve C, beginning at X ( T )  and ending at x and lying entirely in ~ ( 7 ) .  
The curves C, are thus everywhere spacelike. Since there is a unique hypersurface a(7) 
passing through any given point, T can be expressed as a function of x .  Between any pair 
of neighbouring curves C, there is a continuous one-to-one mapping such that the 
endpoints of the two curves correspond to each other. For a mapping of this kind can 
always be found by suitably parametrising the curves and having points with the same 
parameter transformed into each other. Our further results will hold for any such 
parametrisation. 

Consider the gauge transformation for which the gauge function is minus the 
integral of the old potential along C,, 

Changing x to x + Sx generates a two-dimensional surface which is bounded by the 
closed contour formed from C,, Cx+sx (taken in its negative sense) and the straight line 
segments Sx and - S X  joining the endpoints of the original and displaced curves (see 
figure 1). Calculating the change in x by using Stokes’ theorem, we obtain 

This is the path-dependent four-potential. It involves the old potential a only through 
its value at the reference point. If this latter were always at spatial infinity (where a 
would be presumed to vanish), then a“ would depend on the field strengths and the 
curves C, alone (De Witt 1962). In the following, X need not be a point at infinity. 
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Figure 1. Illustrating the mapping x‘+x’+Sx‘ from the points of C, onto those of a 
neighbouring curve C,,,. The surface of infinitesimal width generated by this process has 
surface element given by da;, = dx; Sx: -dx: Sx; and its boundary curve has the sense 
indicated by the circle. 

The gauge function x ( x )  of equation (7) depends on the potential a only at points x ’  
in the hypersurface U that contains x .  This is because C, is entirely in U. If x is to satisfy 
all the conditions of § 3, then it must not depend on any particle coordinates except 
those in (T. This will be the case if we introduce three invariant parameters U, z1 and w to 
specify the points of U and make the parameters of X(T) definite functions of the 
parameters of the x,(T), and then make the parameters of any point x ’  of C, definite 
functions of the parameters of X(T) and those of x .  The functions of the parameters 
must be such that C, begins at X and ends at x.  If, in addition, these functions are the 
same for every U, i.e. have no explicit dependence on T, then the Lagrangian remains 
scleronomic after the gauge transformation. 

5. Path-dependent Lagrangian-polarisation-magnetisation tensor 

To investigate the polarisation-magnetisation tensor of the system, we consider a set of 
auxiliary curves selected from the curves C, by the motion of the charged particles. Let 
C, be that curve which, for every T, coincides instantaneously with Cx,(+. The velocity 
a x ’ / &  of a point x ’  on C, depends on the velocity 1, of particle (Y and on the way in 
which C, changes with x when x = x, (7). As T varies, C, sweeps out a two-dimenional 
surface S, bounded by the trajectories of particle (Y and the reference point (figure 2). 
We assume the total boundary curve to consist of the world lines 1, (positive sense) and 
L (negative sense) together with C, taken in its positive sense at T = -00 and in its 
negative sense at T = 00. If the polarisation-magnetisation tensor is defined (see also 
Fiutak and Zukowski 1978) by 

m&”(x )  = e, S4(x - x ’ )  du’&”, 
a 
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Figure 2. This diagram shows the two-dimensional surface S, which is generated by the 
motion of the curve C, and has edges along the world lines 1, and L of particle CY and the 
reference point. The sense of the boundary curve of S,  is indicated by the circle. 

then Stokes’ theorem shows that the charge-current density (2) can be divided into true 
and bound contributions as follows: 

j ’ l ( x )  = jKue(X)  + ~~JTI””(x) .  (10) 

The expression for the true charge-current density appearing here is 

Q being the total charge of the aggregate. The decomposition (10) is useful in the 
derivation of the covariant atomic field equations (see e.g. De Groot 1969). That there 
is no contribution to the line integral around the boundary of S, from the curves C, at 
T = fa can be seen by factorising the four-dimensional delta function. We have 

(12) 
where 8 is the ordinary one-dimensional delta function that is even under a change of 
sign of its argument. J ( T ,  U, U, w )  is the Jacobian of the non-singular transformation 
(T, U, v,  w )  + (xo, xl, x2, x3) and is a pseudoscalar. Equation (12) can also be used to 
write the polarisation-magnetisation tensor (9) as a linear combination of line integrals 
of three-dimensional delta functions along the curves C, (cf Healy 1978). It should be 
noted that the velocities dx‘ /ar  on C, need not be timelike (except when x’  = x,), unless 
the curves C, are specially chosen. If this is done, then the integrals along the curves C, 
are reducible, in every inertial frame, to instantaneous integrals along purely spatial 
curves (Healy 1978). 

The proof of the equality of the path-dependent minimal-coupling and multipolar 
Lagrangians rests on the definitions of the polarisation-magnetisation tensor and of the 
true charge-current density given by equations (9) and (1 1) respectively. For these 
imply that 

S4(x) = J- s (7)s (U )S (0)s (w ), 
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where the first expression represents the minimal-coupling and the second the multi- 
polar form of the path-dependent interaction Lagrangian. To show the equality of 
these two expressions, we substitute the expansion (8) for the path-dependent potential 
in the first line of equation (13) and use the resolution (12) of the delta function. The 
equivalence of the resulting expression and that on the second line of equation (13) then 
follows from the definitions (9) and (1 1). In performing the analysis it is convenient to 
write the four-dimensional volume element (1) as J d7 du dv dw and to use again the 
factorisation (12). 

The first term of the multipolar interaction Lagrangian corresponds to the coupling 
between the field and a single collective 'particle' of charge Q located at the reference 
point. This term still depends on the original potential, but is not present if either the 
total system is electrically neutral or the potential vanishes at the reference point. The 
second term is independent of the gauge of the potential, but depends on the 'gauge' of 
the polarisation-magnetisation tensor, i.e. on the choice of integration paths used to 
define it. 

6. Deformation of integration paths as a gauge transformation 

The gauge function that relates the potentials corresponding to different choices of the 
integration paths will now be examined. If X 1  and X Z  are two reference points (which 
may possibly coincide) and Cp' and C:') associated integration paths (both embedded 
in the hypersurface U), then equation (7) and Stokes' theorem give for the gauge 
function connecting the path-dependent potentials a"( ')  and a"(') 

~ ' l z ' ( x ) ~ ~ ' z ' ( x ) - ~ ' l ' ( x )  =;\I bFLy(x ' )  dak,+  a F ( x ' )  dxk, (14) 

where Clz is a curve joining X1 and X Z  and lying in U, and s, is a two-dimensional 
surface also lying in CT and bounded by C12, Cf) and Cf)  (taken in its negative sense). If 
X1 and X 2  coincide, then x(") does not depend on the gauge of the original potential a,  
as the line integral along ClZ then vanishes (cf Belinfante 1962). 

The surface integral that appears in equation (14) is independent of the surface sx, so 
long as the boundary curve remains fixed. This follows from the the three-dimensional 
divergence theorem, since the dual tensor b" is divergence-free. It will be useful, 
however, to suppose that s, varies continuously with x ,  because the motion of particle a 
then determines a continuously moving surface s, which coincides instantaneously with 
s , ~ ( ~ ) ,  just as C, coincides with CXm.(7). As 7 varies from -00 to 00, the surface s, 
generates a three-dimensional hypersurface U, bounded by S c ' ,  S&" and SlZ (these 
being the two-dimensional surfaces generated by Cbf', C?) and Clz)  and by s, itself at 
7 = *00 (see figure 3). Now corresponding to the surfaces S?) and Sp' are polarisation- 
magnetisation tensors m(l)  and m(2) defined analogously to the tensor m in equation (9). 
We may also define a tensor m(12) by 

S. I,,, 

mi;YZ)(x) = Q\ (  S ( x  - x ' )  dcY" 
SI2 

The divergence of tq12) is l / c  times the difference between the true charge-current 
density vector associated with X z  and that associated with X1.  If we consider only 
simple hypersurfaces U, and interchange the labels 1 and 2 if necessary, then we obtain 
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L1 I 
s12 
I 

Figure 3. Showing the surface s, (shaded) which is bounded by the curves Cbf’, CL’) and 
Clz. As these curves evolve, they generate a two-dimensional tubelike surface (consisting 
of Sbf’, Sf’ and Slz) which encloses the three-dimensional hypersurface U=. le is the world 
line of particle a and L1 and Lz those of the reference points. 

from the three-dimensional divergence theorem 

where 

U, 

and E is the Levi-Civita tensor density. Equation (16) may be regarded as a kind of 
gauge transformation of the polarisation-magnetisation tensor in which the vector field 
U plays the role of a gauge function. Under this transformation the form of the relation 
(10) is preserved, provided that the true charge-current density at X l  is simultaneously 
shifted to X z .  

The gauge function (14) used for the transformation of the potential does not 
depend on the choice of the curve Clz. (The gauge function corresponding to a given 
gauge transformation is in any case unique but for an arbitrary additive constant.) This 
is not true of the analogous transformation for the polarisation-magnetisation tensor, 
however, since the ‘gauge’ function (17) depends on C12, as does the tensor (15). 
Moreover, o changes when the surfaces s, are changed, even if C12 is unaltered. 
Suppose we replace C12, now called by Ct2 and simultaneously replace the 
surfaces s,, now called s,“, by surfaces sp. This changes the surfaces SE into surfaces s!. 
We let sab be a surface in U bounded by CY2 and Ct2. (This surface vanishes if C42 and 
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Figure 4. In this diagram the two-dimensional surfaces s:, si and sab  are represented by 
curves, while the portion of the three-dimensional hypersurface g that is bounded by them 
is represented by the shaded surface. As s z ,  ss and sob evolve, they generate a tubelike 
three-dimensional hypersurface (consisting of mz, ai  and m o b )  which encloses the four- 
dimensional region R,. 

C &  coincide.) As r varies, the portion of U that is bounded by s z ,  ss and sub generates 
a four-dimensional region, R, say, bounded by U:, U: and uab, where uab is the 
hypersurface generated by s a b  (see figure 4). We then have two vector fields v u  and v b ,  
defined as in equation (17), but with the integration being over crz or a!. If we treat 
only the case in which R, is a simple region, and choose the sense of uQb and the order of 
the labels a and b properly, we obtain from the divergence theorem 

where 

and 

The function HR, (x) is zero or one according to whether x is outside or inside R,. A 
further transformation is induced by altering the surface sub which is bounded by C& 
and Ctz. This keeps v a  and v b  fixed, but changes the scalar function $ by changing the 
integration region R,. 
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7. Summary 

In § 2 the world lines of the charged particles were parametrised in an invariant manner 
by foliating the space-time manifold into spacelike hypersurfaces. The effect of gauge 
transformations on the Lagrangian was considered in 9 3, and De Witt's gauge 
transformation, resulting in the path-dependent four-potential, was carried out in D 4. 
The path-dependent Lagrangian was shown in § 5 to lead naturally to an expression for 
the polarisation-magnetisation tensor. In 0 6 a 'gauge' transformation of this tensor 
was seen to be a necessary adjunct to the gauge transformation of the potential caused 
by altering the integration paths. The form of Hamilton's principle that has been used 
involves the imposition of constraints on the particle coordinates. The associated 
variational problem is treated in the following Appendix by the method of Lagrangian 
multipliers. 

Appendix 

We show that in the derivation of the Euler-Lagrange equations it is sufficient to vary 
the particle coordinates along the hypersurfaces U. If the equation of U(?) is written as 
f (x, 7 )  = 0, then the action integral is 

since the subtracted sum is zero. The A, are, for the moment undetermined, Lagran- 
gian multipliers. Keeping the potential a fixed, we obtain for the variation of d 

Sd=c 72 (------A,-)Sx:dr. a 2  d a 2  a f  
, ax: d r  ai: ax: 

It has been assumed that Sx, is along U (and hence that (af/ax,")Sx," is zero) and 
vanishes at r1 and r2. Since af/ax: is never zero (U being spacelike), the variations S x t  
can be chosen arbitrarily. Hamilton's principle then implies that the equations 

must hold for all p, provided the A, have first been chosen to make them hold for p = 0. 
This is true even if the Sx, are further restricted by the requirement that the world lines 
of the varied motion, like those of the natural motion, be timelike and thus kinematic- 
ally possible. Equations (A3) together with the constraint equation f(x,, 7 )  = 0 deter- 
mine the motion. Now for the Lagrangian 9 defined in § 3, the A, are identically zero. 
To prove this we note that 

and that, because of this equation and equations (Aj) ,  
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Since both a f / a x ,  and x, are timelike vectors, their scalar product is non-zero and the 
conclusion follows. Equations (A3) then reduce to the ordinary Euler-Lagrange 
equations, which are equivalent to the Minkowski equations of motion. 
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